skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bastille‐Rousseau, Guillaume"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Efficient learning about disease dynamics in free‐ranging wildlife systems can benefit from active surveillance that is standardized across different ecological contexts. For example, active surveillance that targets specific individuals and populations with standardized sampling across ecological contexts (landscape‐scale targeted surveillance) is important for developing a mechanistic understanding of disease emergence, which is the foundation for improving risk assessment of zoonotic or wildlife‐livestock disease outbreaks and predicting hotspots of disease emergence. However, landscape‐scale targeted surveillance systems are rare and challenging to implement. Increasing experience and infrastructure for landscape‐scale targeted surveillance will improve readiness for rapid deployment of this type of surveillance in response to new disease emergence events. Here, we describe our experience developing and rapidly deploying a landscape‐scale targeted surveillance system for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in two free‐ranging deer species across their ranges in the United States. Our surveillance system was designed to collect data across individual, population, and landscape scales for future analyses aimed at understanding mechanisms and risk factors of SARS‐CoV‐2 transmission, evolution, and persistence. Our approach leveraged partnerships between state and federal public service sectors and academic researchers in a landscape‐scale targeted surveillance research network. Methods describe our approach to developing the surveillance network and sampling design. Results report challenges with implementing our intended sampling design, specifically how the design was adapted as different challenges arose and summarize the sampling design that has been implemented thus far. In the discussion, we describe strategies that were important for the successful deployment of landscape‐scale targeted surveillance, development and operation of the research network, construction of similar networks in the future, and analytical approaches for the data based on the sampling design. 
    more » « less
  2. COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide. 
    more » « less
  3. Abstract SNAPSHOT USA is a multicontributor, long‐term camera trap survey designed to survey mammals across the United States. Participants are recruited through community networks and directly through a website application (https://www.snapshot-usa.org/). The growing Snapshot dataset is useful, for example, for tracking wildlife population responses to land use, land cover, and climate changes across spatial and temporal scales. Here we present the SNAPSHOT USA 2021 dataset, the third national camera trap survey across the US. Data were collected across 109 camera trap arrays and included 1711 camera sites. The total effort equaled 71,519 camera trap nights and resulted in 172,507 sequences of animal observations. Sampling effort varied among camera trap arrays, with a minimum of 126 camera trap nights, a maximum of 3355 nights, a median 546 nights, and a mean 656 ± 431 nights. This third dataset comprises 51 camera trap arrays that were surveyed during 2019, 2020, and 2021, along with 71 camera trap arrays that were surveyed in 2020 and 2021. All raw data and accompanying metadata are stored on Wildlife Insights (https://www.wildlifeinsights.org/), and are publicly available upon acceptance of the data papers. SNAPSHOT USA aims to sample multiple ecoregions in the United States with adequate representation of each ecoregion according to its relative size. Currently, the relative density of camera trap arrays varies by an order of magnitude for the various ecoregions (0.22–5.9 arrays per 100,000 km2), emphasizing the need to increase sampling effort by further recruiting and retaining contributors. There are no copyright restrictions on these data. We request that authors cite this paper when using these data, or a subset of these data, for publication. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. 
    more » « less